Abstract
Fast three-dimensional (3-D) ultrasound imaging is a technical challenge. Previously, a high-frame rate (HFR) imaging theory was developed in which a pulsed plane wave was used in transmission, and limited-diffraction array beam weightings were applied to received echo signals to produce a spatial Fourier transform of object function for 3-D image reconstruction. In this paper, the theory is extended to include explicitly various transmission schemes such as multiple limited-diffraction array beams and steered plane waves. A relationship between the limited-diffraction array beam weighting of received echo signals and a 2-D Fourier transform of the same signals over a transducer aperture is established. To verify the extended theory, computer simulations, in vitro experiments on phantoms, and in vivo experiments on the human kidney and heart were performed. Results show that image resolution and contrast are increased over a large field of view as more and more limited-diffraction array beams with different parameters or plane waves steered at different angles are used in transmissions. Thus, the method provides a continuous compromise between image quality and image frame rate that is inversely proportional to the number of transmissions used to obtain a single frame of image. From both simulations and experiments, the extended theory holds a great promise for future HFR 3-D imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.