Abstract
In this article, a novel higher order iterative method for solving nonlinear equations is developed. The new iterative method obtained from fifth order Newton-Özban method attains eighth order of convergence by adding a single step with only one additional function evaluation. The method is extended to Banach spaces and its local as well as semi-local convergence analysis is done under generalized continuity conditions. The existence and uniqueness results of solution are also provided along with radii of convergence balls. From the numerical experiments, it can be inferred that the proposed method is more accurate and effective in high precision computations than existing eighth order methods. The computation of error analysis and norm of functions demonstrate that proposed method takes a lead over the considered methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.