Abstract

Multi-fidelity surrogate modeling (MFSM) methods are gaining recognition for their effectiveness in addressing simulation-based design challenges. Prior approaches have typically relied on recursive techniques, combining a limited number of high-fidelity (HF) samples with multiple low-fidelity (LF) datasets structured in hierarchical levels to generate a precise HF approximation model. However, challenges arise when dealing with non-level LF datasets, where the fidelity levels of LF models are indistinguishable across the design space. In such cases, conventional methods employing recursive frameworks may lead to inefficient LF dataset utilization and substantial computational costs. To address these challenges, this work proposes the extended hierarchical Kriging (EHK) method, designed to simultaneously incorporate multiple non-level LF datasets for improved HF model construction, regardless of minor differences in fidelity levels. This method leverages a unique Bayesian-based MFSM framework, simultaneously combining non-level LF models using scaling factors to construct a global trend model. During model processing, unknown scaling factors are implicitly estimated through hyperparameter optimization, resulting in minimal computational costs during model processing, regardless of the number of LF datasets integrated, while maintaining the necessary accuracy in the resulting HF model. The advantages of the proposed EHK method are validated against state-of-the-art MFSM methods through various analytical examples and an engineering case study involving the construction of an aerodynamic database for the KP-2 eVTOL aircraft under various flying conditions. The results demonstrated the superiority of the proposed method in terms of computational cost and accuracy when generating aerodynamic models from the given multi-fidelity datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.