Abstract

Harnack’s inequality is one of the most fundamental inequalities for positive harmonic functions and has been extended to positive solutions of general elliptic equations and parabolic equations. This article gives a different generalization; namely, we generalize Harnack chains rather than equations. More precisely, we allow a small exceptional set and yet obtain a similar Harnack inequality. The size of an exceptional set is measured by capacity. The results are new even for classical harmonic functions. Our extended Harnack inequality includes information about the boundary behavior of positive harmonic functions. It yields a boundary Harnack principle for a very nasty domain whose boundary is given locally by the graph of a function with modulus of continuity worse than Holder continuity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.