Abstract
In this paper we couple noncommutative vielbein gravity to scalar fields. Noncommutativity is encoded in a $$\star $$ -product between forms, given by an abelian twist (a twist with commuting vector fields). A geometric generalization of the Seiberg–Witten map for abelian twists yields an extended theory of gravity coupled to scalars, where all fields are ordinary (commutative) fields. The vectors defining the twist can be related to the scalar fields and their derivatives, and hence acquire dynamics. Higher derivative corrections to the classical Einstein–Hilbert and Klein–Gordon actions are organized in successive powers of the noncommutativity parameter $$\theta ^{AB}$$ .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.