Abstract
Open-shop scheduling problem (OSSP) is a well-known topic with vast industrial applications which belongs to one of the most important issues in the field of engineering. OSSP is a kind of NP problems and has a wider solution space than other basic scheduling problems, i.e., Job-shop and flow-shop scheduling. Due to this fact, this problem has attracted many researchers over the past decades and numerous algorithms have been proposed for that. This paper investigates the effects of crossover and mutation operator selection in Genetic Algorithms (GA) for solving OSSP. The proposed algorithm, which is called EGA_OS, is evaluated and compared with other existing algorithms. Computational results show that selection of genetic operation type has a great influence on the quality of solutions, and the proposed algorithm could generate better solutions compared to other developed algorithms in terms of computational times and objective values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.