Abstract
Numerous bamboo species collectively flower and seed at dramatically extended, regular intervals - some as long as 120 years. These collective seed releases, termed 'masts', are thought to be a strategy to overwhelm seed predators or to maximise pollination rates. But why are the intervals so long, and how did they evolve? We propose a simple mathematical model that supports their evolution as a two-step process: First, an initial phase in which a mostly annually flowering population synchronises onto a small multi-year interval. Second, a phase of successive small multiplications of the initial synchronisation interval, resulting in the extraordinary intervals seen today. A prediction of the hypothesis is that mast intervals observed today should factorise into small prime numbers. Using a historical data set of bamboo flowering observations, we find strong evidence in favour of this prediction. Our hypothesis provides the first theoretical explanation for the mechanism underlying this remarkable phenomenon.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.