Abstract

Flag verification techniques are useful in quantum error correction for detecting critical faults. Here we present an application of flag verification techniques to improving post-selected performance of near-term algorithms. We extend the definition of what constitutes a flag by creating error-detection gadgets based on known transformations of unitary operators. In the case of Clifford or near-Clifford circuits, these unitary operators can be chosen to be controlled Pauli gates, leading to gadgets which require only a small number of additional Clifford gates. We show that such flags can improve circuit fidelities by up to a factor of 2 after post selection, and demonstrate their effectiveness over error models featuring single-qubit depolarizing noise, crosstalk, and two-qubit coherent overrotation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.