Abstract

In this paper, an enriched finite element method is presented for numerical simulation of saturated porous media. The arbitrary discontinuities, such as material interfaces, are encountered via the extended finite element method (X-FEM) by enhancing the standard FEM displacements. The X-FEM technique is applied to the governing equations of porous media for the spatial discretization, followed by a generalized Newmark scheme used for the time domain discretization. In X-FEM, the material interfaces are represented independently of element boundaries and the process is accomplished by partitioning the domain with some triangular sub-elements whose Gauss points are used for integration of the domain of elements. Finally, several numerical examples are analyzed, including the dynamic analysis of the failure of lower San Fernando dam, to demonstrate the efficiency of the X-FEM technique in saturated porous soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.