Abstract
<abstract><p>This paper discusses the existence of solutions for fractional differential equations with nonlocal boundary conditions (NFDEs) under essential assumptions. The boundary conditions incorporate a point $ 0\leq c &lt; d $ and fixed points at the end of the interval $ [0, d] $. For $ i = 0, 1 $, the boundary conditions are as follows: $ a_{i}, b_{i} &gt; 0 $, $ a_{0} p(c) = -b_{0} p(d), \ a_{1} p^{'}(c) = -b_{1} p^{'}(d) $. Furthermore, the research aims to expand the usability and comprehension of these results to encompass not just NFDEs but also classical fractional differential equations (FDEs) by using the Krasnoselskii fixed-point theorem and the contraction principle to improve the completeness and usefulness of the results in a wider context of fractional differential equations. We offer examples to demonstrate the results we have achieved.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.