Abstract

ABSTRACTThis paper investigates the extended dissipative filter design problems for continuous-time fuzzy systems with time-varying delays under imperfect premise variables based on a unified performance index−extended dissipative. Attention is focused on solving the H∞, L2 − L∞, passive and dissipative filtering problems for fuzzy systems with time-varying delays under this unified framework. Based on the unified performance index, a new delay-dependent filter design approach in terms of linear matrix inequalities is obtained by employing Lyapunov–Krasovskii functional method together with a novel efficient integral inequality. The designed filter can guarantee the filtering error system satisfy the prescribed H∞, L2 − L∞, passive and dissipative performance by tuning the weighting matrices in the conditions. Moreover, in this paper, the fuzzy filter does not need to share the same membership function with fuzzy model, which can enhance design flexibility and robust property of the fuzzy filter system. Finally, two examples are provided to illustrate the effectiveness and significant improvement of the method proposed in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.