Abstract

This article addresses the problem of extended dissipative filtering design for the class of nonlinear interconnected systems with time-varying delays under the cyber attacks. The dynamics of proposed interconnected systems (ISs) is modeled by the Takagi-Sugeno fuzzy (TSF) IF-THEN rules. The relevant practical model is used to describe the network connectivity between the plant and the filter. In addition, to develop the filter for nonlinear systems in more practical sense, the sensor delays and the influence of cyber attacks are taken into account during the signal transmission. In order to verify that the developed closed-loop system is asymptotically stable with extended dissipative, sufficient conditions are derived by constructing the delay-dependent Lyapunov-Krasovskii functional (LKF) and employing the summation inequalities through the linear matrix inequalities (LMIs) approach. The outcomes of theoretical results can be used to analyze the various performances like H∞ performance, (Υ1,Υ2,R)−α−dissipativity, passivity, mixed H∞/passivity, and l2−l∞ performance in a single framework. At last, a numerical example is presented to demonstrate the proposed method and to validate the theoretical findings in a practical sense.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call