Abstract

This brief investigates the extended dissipativity performance of semi-discretized competitive neural networks (CNNs) with time-varying delays. Inspired by the computational efficiency and feasibility of implementing the networks, we formulate a discrete counterpart to the continuous-time CNNs. By employing an appropriate Lyapunov–Krasovskii functional (LKF) and a relaxed summation inequality, sufficient conditions ensure the extended dissipative criteria of discretized CNNs are obtained in the linear matrix inequality framework. Finally, to refine our prediction, two numerical examples are provided to demonstrate the sustainability and merits of the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.