Abstract

All-optical photoacoustic microscopy (AOPAM) facilitates high-sensitivity, wide-bandwidth, volumetric imaging without coupling media. However, the rapid divergence of the Gaussian beam restricts the stability and depth-of-field in typical Gaussian AOPAM (G-AOPAM). Here we report an extended depth-of-field AOPAM using a dual non-diffracting Bessel beam (B-AOPAM). Benefiting from the designing, the B-AOPAM has the unique advantages of increasing depth resolving ability and improving photoacoustic detection sensitivity. The proposed scheme shows optimal lateral resolution of 2.4μm and a long depth-of-focus of 635μm, which is 10-fold larger than that of the G-AOPAM. The scattering phantoms and in vivo animal experiments demonstrated the imaging feasibility and capability of the B-AOPAM, which can provide noncontact, high spatial resolution imaging of non-flat tissue and contribute to future clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.