Abstract

We present density–functional theory studies for a variety of surfaces and extended defects in GaN. According to previous theoretical studies1{100} type surfaces are electrically inactive. They play an important role in GaN since similar configurations occur at open–core screw dislocations and nanopipes as well as at the core of threading edge dislocations. Domain boundaries are found to consist of four–fold coordinated atoms and are also found to be electrically inactive. Thus, except for full–core screw dislocations which possess heavily strained bonds all investigated extended defects do not induce deep states into the band–gap. However, electrically active impurities in particular gallium vacancies and oxygen related defect complexes are found to be trapped at the stress field of the extended defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call