Abstract

Scaling regimes for polymers confined to tubular channels are well established when the channel cross-sectional dimension is either very small (Odjik regime) or large (classic de Gennes regime) relative to the polymer Kuhn length. However, experiments of confined polymers using DNA as a model system are usually located in the intermediate region between these two regimes. In the literature, controversy exists regarding the existence of the extended de Gennes regime in this intermediate region. Here we use simulations and theory to reconcile conflicting theories and confirm the existence of extended de Gennes regime. We show that prior work did not support the notion of this regime because of the use of a wrong confinement free energy. In a broad sense, the extended de Gennes regime corresponds to the situation when excluded volume interaction is weaker than thermal energy. Such a situation also occurs in many other cases, such as semidilute polymer solutions and polymers under tension. This work should be...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.