Abstract
Predicting the outcomes of organic reactions using data-driven approaches aids in the acceleration of research. In laboratory-scale experiments, only a small number of reaction data can be accessed for machine learning model construction, where reaction representations play a pivotal role in the success of model construction. Nevertheless, representation comparison for a small data set is not adequate. Herein, focusing on the enantioselectivity of phosphoric-acid-catalyzed reactions, various two-dimensional and three-dimensional reaction representations (descriptors) were compared. Overall, the concatenated form of the extended connectivity fingerprints showed the best predictive capability for the two types of data sets: high-throughput experimental data and manually collected literature data sets. Furthermore, highlighting the substructure contribution to the prediction outcome was shown to be informative for guiding catalyst development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.