Abstract

Artificial photocatalysis offers a clean approach for producing H2 O2 . However, the poor selectivity and activity of H2 O2 production hamper traditional industrial applications and emerging photodynamic therapy (PDT)/chemodynamic therapy (CDT). Herein, we report a C5 N2 photocatalyst with a conjugated C=N linkage for selective and efficient non-sacrificial H2 O2 production in both normoxic and hypoxic systems. The strengthened delocalization of π-electrons by linkers in C5 N2 downshifted the band position, thermodynamically eliminating side H2 evolution reaction and kinetically promoting water oxidation. As a result, C5 N2 had a competitive solar-to-chemical conversion efficiency of 0.55 % in overall H2 O2 production and exhibited by far the highest activity under hypoxic conditions (698 μM h-1 ). C5 N2 was further applied to hypoxic PDT/CDT with outstanding performance in apparent cancer cell death and synchronous bioimaging. The study sheds light on the photosynthesis of H2 O2 by carbon nitrides for health applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call