Abstract

We have developed a new method to accurately account for solvation effects in semiempirical quantum mechanics based on a polarizable continuum model (PCM). The extended conductor-like polarizable continuum model (CPCM-X) incorporates a computationally efficient domain decomposition conductor-like screening model (ddCOSMO) for extended tight binding (xTB) methods and uses a post-processing approach based on established solvation models, like the conductor-like screening model for real solvents (COSMO-RS) and the universal solvent model based on solute electron density (SMD). According to various benchmarks, the approach performs well across a broad range of systems and applications, including hydration free energies, non-aqueous solvation free energies, and large supramolecular association reactions of neutral and charged species. Our method for computing solvation free energies is much more accurate than the current methods in the xtb program package. It improves the accuracy of solvation free energies by up to 40% for larger supramolecular association reactions to match even the accuracy of higher-level DFT-based solvation models like COSMO-RS and SMD while being computationally more than 2 orders of magnitude faster. The proposed method and the underlying ddCOSMO model are readily available for a wide variety of solvents and are accessible in xtb for use in various computational applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.