Abstract

Many examination timetabling procedures employ a phased approach in which the first phase is often the allocation of a large set of mutually conflicting examinations which form a clique in the associated problem graph. The usual practice is to identify a single maximum clique, often quite arbitrarily, in this first phase. We show that in typical examination timetabling problems, unlike random graphs, there are often many alternative maximum cliques, and even larger dense subsets of nodes that are almost cliques. A number of methods are proposed for extending the scope of the clique initialisation to include a larger subset of examinations by considering sub-maximum cliques and/or quasi-cliques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.