Abstract

In organic solar cells with non-fullerene acceptors (NFAs), an intra-moiety excited state, originating from intermolecular interactions in the acceptor domain, acts as a key immediate for charge separation. However, the nature of the intra-moiety state remains elusive. Here, we employ a model Hamiltonian with parameters derived from a model system of Y6 crystal to study the nature of low-lying excited states in NFAs. We find the intra-moiety excited state is mixed with local excitation and charge-transfer excitation (CTE) characters with nonnegligible contributions from extended CTEs with spatially-separated electrons and holes. The spatial extent of such a loosely bound state is susceptible to the intermolecular electronic interaction and electron–vibration interaction, which may be promoted by molecule engineering and morphology control. The findings provide an alternative strategy towards device optimization by manipulating the delocalization of intra-moiety state in organic photovoltaic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.