Abstract
Let K be a field and let A be a finitely generated prime K-algebra. We generalize a result of Smith and Zhang, showing that if A is not PI and does not have a locally nilpotent ideal, then the extended centre of A has transcendence degree at most GKdim(A) −2 over K. As a consequence, we are able to show that if A is a prime K-algebra of quadratic growth, then either the extended centre is algebraic over K or A is PI. Finally, we give an example of a finitely generated non-PI prime K-algebra of GK dimension 2 with a locally nilpotent ideal such that the extended centre has infinite transcendence degree over K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.