Abstract
We investigate the ground state properties of ultracold atoms with long range interactions trapped in a two leg ladder configuration in the presence of an artificial magnetic field. Using a Gross-Pitaevskii approach and a mean field Gutzwiller variational method, we explore both the weakly interacting and strongly interacting regime, respectively. We calculate the boundaries between the density-wave/supersolid and the Mott-insulator/superfluid phases as a function of magnetic flux and uncover regions of supersolidity. The mean-field results are confirmed by numerical simulations using a cluster mean field approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.