Abstract
Forecasting the number of daily COVID‐19 cases is critical in the short‐term planning of hospital and other public resources. One potentially important piece of information for forecasting COVID‐19 cases is mobile device location data that measure the amount of time an individual spends at home. Endemic–epidemic (EE) time series models are recently proposed autoregressive models where the current mean case count is modelled as a weighted average of past case counts multiplied by an autoregressive rate, plus an endemic component. We extend EE models to include a distributed‐lag model in order to investigate the association between mobility and the number of reported COVID‐19 cases; we additionally include a weekly first‐order random walk to capture additional temporal variation. Further, we introduce a shifted negative binomial weighting scheme for the past counts that is more flexible than previously proposed weighting schemes. We perform inference under a Bayesian framework to incorporate parameter uncertainty into model forecasts. We illustrate our methods using data from four US counties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Canadian journal of statistics = Revue canadienne de statistique
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.