Abstract
Nonparametric item response models provide a flexible framework in psychological and educational measurements. Douglas (Psychometrika 66(4):531-540, 2001) established asymptotic identifiability for a class of models with nonparametric response functions for long assessments. Nevertheless, the model class examined in Douglas (2001) excludes several popular parametric item response models. This limitation can hinder the applications in which nonparametric and parametric models are compared, such as evaluating model goodness-of-fit. To address this issue, We consider an extended nonparametric model class that encompasses most parametric models and establish asymptotic identifiability. The results bridge the parametric and nonparametric item response models and provide a solid theoretical foundation for the applications of nonparametric item response models for assessments with many items.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.