Abstract

In this letter, we propose a two-parallel-shape array geometry, consisting of sensors spaced much farther apart than a half-wavelength, to improve estimation accuracy via aperture extension for two-dimensional (2D) direction finding. First, the subarray parallel with the x-axis is employed to extract automatically paired high-variance but unambiguous y-axis direction cosines and low-variance but cyclically ambiguous x-axis direction cosines. Then, the subarray parallel with the y-axis is employed to extract automatically paired unambiguous x-axis direction cosines and cyclically ambiguous y-axis direction cosines. Finally, the high-variance unambiguous direction cosine estimates are used to resolve the low-variance cyclically ambiguous direction cosine estimates to obtain automatically paired azimuth-elevation angle estimates. The propagator method, which requires only linear operations but involves no eigen-decomposition or singular-value decomposition into signal/noise subspaces, is adapted to derive the direction cosines. Therefore, the proposed technique offers high estimation precision with low computational complexity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call