Abstract

In this paper, the least squares filtering problem is investigated for a class of nonlinear discrete-time stochastic systems using observations with stochastic delays contaminated by additive white noise. The delay is considered to be random and modelled by a binary white noise with values of zero or one; these values indicate that the measurement arrives on time or that it is delayed by one sampling time. Using two different approximations of the first and second-order statistics of a nonlinear transformation of a random vector, we propose two filtering algorithms; the first is based on linear approximations of the system equations and the second on approximations using the scaled unscented transformation. These algorithms generalize the extended and unscented Kalman filters to the case in which the arrival of measurements can be one-step delayed and, hence, the measurement available to estimate the state may not be up-to-date. The accuracy of the different approximations is also analyzed and the performance of the proposed algorithms is compared in a numerical simulation example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.