Abstract
We introduce a cohomology, called extendable cohomology, for abstract complex singular varieties based on suitable differential forms. Beside a study of the general properties of such a cohomology, we show that, given a complex vector bundle, one can compute its topological Chern classes using the extendable Chern classes, defined via a Chern–Weil type theory. We also prove that the localizations of the extendable Chern classes represent the localizations of the respective topological Chern classes, thus obtaining an abstract residue theorem for compact singular complex analytic varieties. As an application of our theory, we prove a Camacho–Sad type index theorem for holomorphic foliations of singular complex varieties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.