Abstract
The purpose of this paper is to study the extendability of equilibrium states of rodlike nematic polymers with the Maier-Saupe intermolecular potential. We formulate equilibrium states as solutions of a nonlinear system and calculate the determinant of the Jacobian matrix of the nonlinear system. It is found that the Jacobian matrix is nonsingular everywhere except at two equilibrium states. These two special equilibrium states correspond to two points in the phase diagram. One point is the folding point where the stable prolate branch folds into the unstable prolate branch; the other point is the intersection point of the nematic branch and the isotropic branch where the unstable prolate state becomes the unstable oblate state. Our result establishes the existence and uniqueness of equilibrium states in the presence of small perturbations away from these two special equilibrium states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.