Abstract

A central tenet of biology is that globular proteins have a unique 3D structure under physiological conditions. Recent work has challenged this notion by demonstrating that some proteins switch folds, a process that involves remodeling of secondary structure in response to a few mutations (evolved fold switchers) or cellular stimuli (extant fold switchers). To date, extant fold switchers have been viewed as rare byproducts of evolution, but their frequency has been neither quantified nor estimated. By systematically and exhaustively searching the Protein Data Bank (PDB), we found ∼100 extant fold-switching proteins. Furthermore, we gathered multiple lines of evidence suggesting that these proteins are widespread in nature. Based on these lines of evidence, we hypothesized that the frequency of extant fold-switching proteins may be underrepresented by the structures in the PDB. Thus, we sought to identify other putative extant fold switchers with only one solved conformation. To do this, we identified two characteristic features of our ∼100 extant fold-switching proteins, incorrect secondary structure predictions and likely independent folding cooperativity, and searched the PDB for other proteins with similar features. Reassuringly, this method identified dozens of other proteins in the literature with indication of a structural change but only one solved conformation in the PDB. Thus, we used it to estimate that 0.5-4% of PDB proteins switch folds. These results demonstrate that extant fold-switching proteins are likely more common than the PDB reflects, which has implications for cell biology, genomics, and human health.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.