Abstract

AbstractCalcite–dolomite solvus geothermometry is a versatile method for the estimation of metamorphic temperature because of its simplicity. However, in medium‐ to high‐grade metamorphic rocks the accuracy of estimating temperature by the integration of unmixed dolomite and calcite is hampered by the heterogeneous distribution of unmixed dolomite, difficulties in distinguishing between preexisting and exsolved dolomite and demarcating grain boundaries. In this study, it is shown that calcite–dolomite solvus thermometry can be applied to calcite inclusions in forsterite and spinel for the estimation of peak metamorphic temperature in granulite facies marbles from Skallevikshalsen, East Antarctica. The marbles are comprised of a granoblastic mineral assemblage of calcite + dolomite + forsterite + diopside + spinel + phlogopite ± apatite, characteristic of granulite facies metamorphic conditions. Forsterite, spinel and apatite frequently contain ‘negative crystal’ inclusions of carbonates that display homogeneously distributed dolomite lamellae. On the basis of narrow ranges of temperature (850–870 °C) recorded from carbonate inclusions compared with the range from matrix carbonate it is regarded that the inclusion carbonates represent a closed system. Furthermore, this estimate is consistent with dolomite–graphite carbon isotope geothermometry, and is considered to be the best estimate of peak metamorphic temperature for this region. Matrix calcite records different stages of retrograde metamorphism and re‐equilibration of calcite that continued until Mg diffusion ceased at ∼460 °C. Electron backscattered diffraction (EBSD) results together with morphological features of unmixed coarse tabular dolomite suggest anisotropic diffusion and mineral growth are influenced by crystallographic orientation. Identification of sub‐grain boundaries and formation of fine‐grained unmixing in calcite rims suggest the presence of grain boundary fluids in the late retrograde stages of metamorphic evolution. These results, thus, demonstrate the usefulness of carbonate inclusion geothermometry in estimating the peak metamorphic temperatures of high‐grade terranes and the application of EBSD in understanding the unmixing behaviour of minerals with solid solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.