Abstract

In this work, we report a highly active Ruddlesden-Popper oxide as a symmetrical electrode for solid oxide cells through in-situ exsolution strategy. The Cu nanoparticles-decorated (LaSr)0.9Fe0.9Cu0.1O4 (LSFCu) oxide can be simply fabricated by a reducing procedure. The exsolved mechanism of Cu nanoparticle is investigated by the density functional theory (DFT) method. The calculation demonstrates that oxygen releasing is present more energetic in the rocksalt layers, causing the accelerated kinetics of exsolution. The (1 0 0) surface could be the preferential surface for exsolution where take place because of the lowest surface energy. The LSFCu shows a highly electrocatalytic activity as fuel electrode and oxygen electrode simultaneously toward oxygen reduction reaction (ORR) and fuel oxidation reaction (FOR) respectively. In fuel cell (FC) mode, the peak power densities are 573 mW cm−2 and 396 mW cm−2 at 800 °C using humidified H2 and CH4 as fuels, respectively. Moreover, a very high current density of 1.02 A cm−2 can also be accomplished at a voltage of 1.2 V in electrolysis cell (EC) mode, implying that this Ruddlesden-Popper oxide decorated by Cu nanoparticles is highly active as the catalyst for the steam electrolysis in symmetrical solid oxide cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.