Abstract

A survey, carried out using transmission electron microscopy, of exsolution-derived microstructures developed in titanomagnetites is presented. Microstructures, probably produced by spinodal decomposition, consist of a three-dimensional lamellar framework of ulvospinel, separating magnetite-enriched blocks. In coarser textures the magnetite-enriched regions have a plate morphology, and the ulvospinel-enriched lamellae develop secondary exsolution textures. The implications of exsolution for the magnetic properties of titanomagnetites are discussed. The coarsening of exsolution textures will cause the blocking temperature of the magnetite-enriched regions to increase with time. The development of magnetite-enriched plates may alter the magnetic properties of the titanomagnetite, as may the stress associated with some of the small scale, coherent microstructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.