Abstract

Ordered titania nanotubes (pore diameter≈90nm and wall thickness≈10nm) were obtained by the anodization technique and used for the ex-situ deposition of cadmium sulfide quantum dots (CdS QDs) via simple immersion of titania substrates in the CdS colloid. The colloidal dispersion of CdS nanoparticles in water was obtained in the presence of the bifunctional ligand, mercapto silane, which binds to the surface of CdS providing stability to the colloid and preventing further growth of the synthesized nanoparticles. The blue-shift of the optical absorption indicated that the CdS nanoparticles were of quantum dot size. Using the effective mass model, the average particle size was calculated to be 5.4nm. Transmission electron microscopy provided the verification for the estimated size of the nanoparticles, which was followed by performing selected area electron diffraction to determine the mixed phase (cubic and hexagonal) of the synthesized CdS QDs. Scanning electron microscopy and reflectance spectroscopy were employed to characterize the nanostructures consisting of TiO2 nanotubes with different loadings of CdS QDs (after 24h and 72h immersion). It was demonstrated that mercapto silane efficiently binds CdS QDs onto TiO2 nanotubes enabling visible-light response of the obtained nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.