Abstract

Developing metal-organic framework (MOF) adsorbents with excellent performance and robust stability is of critical importance to reduce CO2 emissions yet challenging. Herein, a robust ultra-microporous MOF, Cu(bpfb)(bdc), with mixed ligands of N, N'-(1,4-phenylene)diisonicotinamide (bpfb), and 1,4-dicarboxybenzene (bdc) was delicately constructed. Structurally, this material possesses double-interpenetrated frameworks formed by two staggered, independent frameworks, resulting in two types of narrow ultra-micropores of 3.4 × 5.0 and 4.2 × 12.8 Å2, respectively. The above structural properties make its highly selective separation at 273~298 K with a CO2 capacity of 71.0~86.2 mg/g. Its adsorption heat over CO2 and IAST selectivity were calculated to be 27 kJ/mol and 52.2, respectively. Remarkably, cyclic breakthrough experiments corroborate its impressive performance in CO2/N2 separation in not only dry but also 75% RH humid conditions. Molecular simulation reveals that C-H···OCO2 in the pores plays a pivotal role in the high selectivity of CO2 adsorption. These results point out the huge potential application of this material for CO2/N2 separation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call