Abstract

The widespread adoption of ultra-high strength steels, due to their high bulk resistivity, intensifies expulsion issues in resistance spot welding (RSW), deteriorating both the spot weld and surface quality. This study presents a novel approach to prevent expulsion by employing a preheating current. Through characteristic analysis of joint formation under critical welding current, the importance of plastic material encapsulation around the weld nugget (plastic shell) at high temperatures in preventing expulsion is highlighted. To evaluate the effect of preheating on the plastic shell and understand its mechanism in expulsion prevention, a two-dimensional welding simulation model for dissimilar ultra-high strength steel joints was established. The results showed that optimal preheating enhances the thickness of the plastic shell, improving its ability to encapsulate the weld nugget during the primary welding phase, thereby diminishing expulsion risks. Experimental validation confirmed that by employing the optimal preheating current, the maximum nugget diameter was enhanced to 9.42 mm, marking an increase of 13.4 % and extending the weldable current range by 27.5 %. Under quasi-static cross-tensile loading, joints with preheating demonstrated a 7.9 % enhancement in maximum load-bearing capacity compared to joints without preheating, showing a reproducible and complete pull-out failure mode within the heat-affected zone. This study offers a prevention method based on underlying mechanisms, providing a new perspective for future research on welding parameter optimization with the aim of expulsion prevention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.