Abstract
Automatic driving in expressways is generally considered to be the easiest for commercial landing, and vehicle behavior decision-making is the core of automatic driving technology, which directly affects the safety and comfort of vehicle driving. In this paper, an automatic lane change strategy based on prior knowledge and data-driven is proposed for expressway. Our method decouples autonomous driving decisions into two processes. Firstly, we propose an optimization model of lane change features based on prior knowledge, which not only provides a basis for the selection of vehicle features but also effectively reduces the interference of invalid features. The driving risk field is used to screen the vehicle targets that have potential influence on the lane change of the ego vehicle, and the maximal information coefficient evaluates the effectiveness of the features of the vehicle targets through the maximal information coefficient to optimize the lane change features. Then, a data-driven lane-changing model is proposed based on Attention-BiLSTM (Bi-directional Long Short-Term Memory), which transforms vehicle lane-changing into time series prediction, fully explores the relationship between lane-changing features in the context information, and effectively improves the anti-interference ability of the system against accidental errors. In addition, the attention mechanism can adaptively adjust the weight of lane-changing features and effectively capture the important information that needs attention in different lane-changing states, further improving the accuracy of the model. Finally, the validity of the model is verified by remote sensing data sets and real vehicle experiments. The test results show that the test accuracy of our method is 95.1% in data sets and 94.2% in real vehicle experiments, which fully meets the requirements of lane change decisions about automatic driving.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.