Abstract

The modelling and analysis of multi-component discrete event systems is a challenging research area. Over 30 years, modelling and simulation research of discrete event system specification (DEVS) has been developed with (1) dense-time, (2) the I/O concept, and (3) hierarchical model construction. Nevertheless, DEVS model verification research began relatively recently considering the whole DEVS research history. In the meantime, over 15 years, the automata theory has been developed to cover the dense-time behaviour verification of discrete event systems. Especially, timed automata (TA) has performed the key role in the field. This paper builds on the research results that have been achieved from both theories of DEVS and TA. Thus contributions of this paper can be seen from each side. From the viewpoint of the DEVS theory, a finite and nondeterministic DEVS has been found as a verifiable class. From the viewpoint of the TA theory, a TA which is modular and hierarchical as well as verifiable, is proposed. To show the results, this paper uses the top down manner in which a general formalism is defined first and then its sub-classes are introduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.