Abstract
Natural deduction systems were motivated by the desire to define the meaning of each connective by specifying how it is introduced and eliminated from inference. In one sense, this attempt fails, for it is well known that propositional logic rules (however formulated) underdetermine the classical truth tables. Natural deduction rules are too weak to enforce the intended readings of the connectives; they allow non-standard models. Two reactions to this phenomenon appear in the literature. One is to try to restore the standard readings, for example by adopting sequent rules with multiple conclusions. Another is to explore what readings the natural deduction rules do enforce. When the notion of a model of a rule is generalized, it is found that natural deduction rules express “intuitionistic” readings of their connectives. A third approach is presented here. The intuitionistic readings emerge when models of rules are defined globally, but the notion of a local model of a rule is also natural. Using this benchmark, natural deduction rules enforce exactly the classical readings of the connectives, while this is not true of axiomatic systems. This vindicates the historical motivation for natural deduction rules. One odd consequence of using the local model benchmark is that some systems of propositional logic are not complete for the semantics that their rules express. Parallels are drawn with incompleteness results in modal logic to help make sense of this.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.