Abstract

The prothoracic gland (PG) is the source of ecdysteoids in larval insects. Although numerous studies have been conducted on signaling networks involved in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in PGs, less is known about regulation of metabolism in PGs. In the present study, we investigated correlations between expressions of sugar transporter (St)/trehalase (Treh) genes and PTTH-stimulated ecdysteroidogenesis in Bombyx mori PGs. Our results showed that in vitro PTTH treatment stimulated expression of the St1 gene, but not other transporter genes. Expression of the Treh1 gene was also stimulated by PTTH treatment. An immunoblotting analysis showed that St1 protein levels in Bombyx PGs increased during the later stage of the last larval instar and were not affect by PTTH treatment. PTTH treatment enhanced Treh enzyme activity in a time-dependent manner. Blocking either extracellular signal-regulated kinase (ERK) signaling with U0126 or phosphatidylinositol 3-kinase (PI3K) signaling with LY294002 decreased PTTH-stimulated Treh enzyme activity, indicating a link from the ERK and PI3K signaling pathways to Treh activity. Treatment with the Treh inhibitor, validamycin A, blocked PTTH-stimulated Treh enzyme activity and partially inhibited PTTH-stimulated ecdysteroidogenesis. Treatment with either a sugar transport inhibitor (cytochalasin B) or a specific glycolysis inhibitor (2-deoxy-D-glucose, 2-DG) partially inhibited PTTH-stimulated ecdysteroidogenesis. Taken together, these results indicate that increased expressions of St1/Treh1 and Treh activity, which lie downstream of PTTH signaling, are involved in PTTH stimulation in B. mori PGs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call