Abstract

To detect the expressions of Fas/DcR3 and to investigate the cytotoxic effects of RGD-FasL on pituitary adenoma cells. Fas/DcR3 mRNAs were detected by Reverse transcription polymerase chain reaction (RT-PCR) and their surface expressions were measured by flow cytometry. Cytotoxicities exerted by FasL and newly-constructed RGD-FasL on tumor cells were measured with 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic cells were examined by electron microscopy and the induced apoptosis was determined by agarose gel electrophoresis. The cell cycle was assessed by flow cytometry with ANNEXIN V FITC/PI. The expressions of caspases, Bcl-2, RANKL and JNK2 were detected by Western blotting. Fas/DcR3 was expressed in GH3/MMQ/AtT20 cells. The cytotoxic effects of RGD-FasL on tumor cells were seen in a dose-dependent manner. These cells showed the same sensitivity to RGD-FasL as to FasL. RGD-FasL induced apoptosis and G1/G0 arrest. The expressions of caspase-8/9/3, RANKL, JNK2 were increased while that of Bcl-2 was decreased with treatment of RGD-FasL. Fas can be a novel target for the treatment of pituitary adenomas. RGD-FasL induces apoptosis of pituitary adenoma cells through caspase activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.