Abstract

Background/Aims: Myoblasts and muscle satellite cells have the potential to transdifferentiate into adipocytes or adipocyte-like cells. Previous studies suggest that mitogen-activated protein kinase (MAPK) is critical to adipogenic trans-differentiation of muscle cells. ERK1/2, P38 and JNK are three major MAPK family members; their activation and regulatory functions during adipogenic trans-differentiation of myoblasts are investigated. Methods: C2C12 myoblasts were cultured and induced for adipogenic trans-differentiation. Activation patterns of MAPKs were assayed using protein microarray and Western blot. Three specific MAPK blockers, U0126, SB20358 and SP600125, were used to block ERK1/2, P38 and JNK during trans-differentiation. Cellular adipogenesis was measured using staining and morphological observations of cells and expression changes in adipogenic genes. Results: Inhibitors reduced phosphorylation of corresponding MAPK and produced unique cellular effects. Suppressing P38 promoted adipogenic trans-differentiation and intensified adipolytic metabolism in differentiated cells. However, inhibition of ERK1/2 had the opposite effects on adipogenesis and no effect on adipolysis. Blocking JNK weakly blocked trans-differentiation but stimulated adipolysis and induced apoptosis. Conclusion: Three MAPKs participate in the regulation of myoblast adipogenic trans-differentiation by controlling adipogenic and adipolysis metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.