Abstract

Receptors for follicle-stimulating hormone (Fshr), luteinizing hormone (Lhcgr1 and Lhcgr2) and androgens (Ara and Arb) transduce the hormonal signals that coordinate spermatogenesis, but the factors that regulate the abundance of these transducers in fish testes remain little-understood. To mend this paucity of information, we first determined changes in transcript abundance for these receptors (fshr, lhcgr1, ara and arb) during spermatogenesis induced by human chorionic gonadotropin (hCG) injection in the eel, Anguilla australis. We related our findings to testicular production of the fish androgen, 11-ketotestosterone (11-KT), and to the levels of the transcripts encoding steroidogenic acute regulatory protein (star) and 11β-hydroxylase (cyp11b), and subsequently evaluated the effects of hCG or 11-KT on mRNA levels of these target genes in vitro. Testicular 11-KT production was greatly increased by hCG treatment, both in vivo and in vitro, and associated with up-regulation of star and cyp11b transcripts. In situ hybridization indicated that testicular fshr mRNA levels were higher in the early stages of hCG-induced spermatogenesis, while lhcgr1 transcripts were most abundant later, once spermatids were observed. In vitro experiments further showed that hCG and its steroidal mediator 11-KT significantly increased fshr transcript abundance. These data provide new angles on the interactions between gonadotropin and androgen signaling during early spermatogenesis. Increases in levels of 11-KT following hCG injection elevated testicular fshr mRNA levels augmenting Fsh sensitivity in the testis. This evidence is suggestive of a positive feedback loop between gonadotropins and 11-KT that may be key to regulating early spermatogenesis in fish.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.