Abstract

MicroRNAs are endogenous small noncoding RNAs that posttranscriptionally regulate the expression of target genes and play crucial roles in diverse physiopathologic processes. In the current study, we examined the microRNA (miRNA) expression profile of high-glucose-treated neonatal rat cardiomyocytes and the potential mechanisms. Differentially expressed miRNAs were analyzed by a miRNA microarray and validated by a quantitative real-time polymerase chain reaction in high-glucose-treated rat cardiomyocytes. Based on the results of our previous study and the bioinformatics prediction, we identified miR-195-5p/SGK1/Nedd4-2/hERG as the top-ranked signal pathway in diabetes cell model in vitro. In summary, our present study provides novel insights into the regulatory mechanism of miR-195-5p/SGK1/Nedd4-2/hERG in rat cardiomyocytes under high-glucose stress, which may provide a novel idea for the development of diagnostic and therapeutic strategies for diabetic cardiomyopathy in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.