Abstract
Different carrier proteins exhibiting distinct transport properties participate in cationic amino acid transport. There are sodium-independent systems, such as b+, y+, y+L and b0,+, and a sodium-dependent system B0,+, most of which have now been identified at the molecular level. In most non-epithelial cells, members of the cationic amino acid transporter (CAT) family mediating system y+ activity seem to be the major entry pathway for cationic amino acids. CAT proteins underlie complex regulation at the transcriptional, post-transcriptional and activity levels. Recent evidence indicates that individual CAT isoforms are necessary for providing the substrate for nitric oxide synthesis, for example CAT-1 for Ca2+-independent nitric oxide production in endothelial cells and CAT-2B for sustained nitric oxide production in macrophages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.