Abstract

Different genome-editing strategies have fuelled the development of new DNA-targeting molecular tools allowing precise gene modifications. Here, the expression, purification, crystallization and preliminary X-ray diffraction of BurrH, a novel DNA-binding protein from Burkholderia rhizoxinica, are reported. Crystallization experiments of BurrH in its apo form and in complex with its target DNA yielded crystals suitable for X-ray diffraction analysis. The crystals of the apo form belonged to the primitive hexagonal space group P3(1) or its enantiomorph P3(2), with unit-cell parameters a = b = 73.28, c = 268.02 Å, α = β = 90, γ = 120°. The BurrH-DNA complex crystallized in the monoclinic space group P2(1), with unit-cell parameters a = 70.15, b = 95.83, c = 76.41 Å, α = γ = 90, β = 109.51°. The self-rotation function and the Matthews coefficient suggested the presence of two protein molecules per asymmetric unit in the apo crystals and one protein-DNA complex in the monoclinic crystals. The crystals diffracted to resolution limits of 2.21 and 2.65 Å, respectively, using synchrotron radiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call