Abstract

Human epidermal growth factor (hEGF) plays an important role in the growth and division of epithelial cells and has good application prospects in skin-related injuries and diseases. Weak skin penetration and rapid clearance of hEGF in skin via the mononuclear phagocyte system have restricted the application of hEGF. To overcome these shortcomings, the recombinant gene TAT-hEGF-CD47 was constructed in our experiments, and the fusion protein TAT-hEGF-CD47 was expressed, purified and renatured. The cell proliferation-promoting function, skin penetration and concentration of TAT-hEGF-CD47 in skin after its application were determined. The results showed that TAT-hEGF-CD47 effectively promoted human skin fibroblast and skin epithelial cell proliferation, and the proliferation-promoting effect was positively correlated with the TAT-hEGF-CD47 concentration. After administration to the skin, TAT-hEGF-CD47 effectively penetrated the epidermal layer of the skin because of the TAT domain and stayed in the skin for a long time because the CD47 fragment slowed its clearance via the mononuclear phagocytic system. In conclusion, TAT-hEGF-CD47 exhibits high cell proliferation-promoting activity, high skin penetration efficiency and long retention time in skin and has laid the foundation for its wide application in skin repair, ulcer, diabetes and even cancer treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call