Abstract
The bacterial expression and purification of human glutathione S-transferase P1-1(hGST P1-1), as a hexahistidine-tagged polypeptide was performed. Site-directed mutagenesis was used to construct mutants in which alanine replaced two (C47A/C101A), three (C14A/C47A/C101A) or all four (C14A/C47A/ C101A/C169A) cysteine residues using the plasmid for the wild type enzyme. Analysis of their catalytic activities and kinetic parameters suggested that cysteins are not essential for the catalytic activity but may contribute to some extent to the catalytic efficiency. Moreover, on SDS-polyacrylamide gel electrophoresis (SDS-PAGE) under nonreducing conditions, hexahistidine-tagged hGST P1-1 (His(6)-hGST P1-1) treated with 1 mM H(2)O(2) showed at least three extra bands, in addition to the native His(6)-hGST P1-1 subunit band. These extra bands were not detected in the cysteinyl mutants. Thus, it indicated that disulfide bonds were formed mainly within subunits between cysteine residues, causing an apparent reduction in molecular weight, only small amounts of binding between subunits being observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.