Abstract

Human epidermal growth factor receptors (EGFR) are an important target in drug discovery in terms of both protein-small-molecule interactions and protein-protein interactions. In this work, the isolation of a stable soluble protein of the tyrosine kinase domain of EGFR in Escherichia coli expression has been accomplished. This successful study presents the expression and purification conditions to obtain a stable soluble protein of the active tyrosine kinase domain of EGFR (EGFR-TK) and ErbB2 (ErbB2-TK) in a bacterial system, albeit in relatively low yields. The recombinant gene was inserted into a pColdI vector and recombinant protein was expressed at low temperature. Purification of EGFR-TK and ErbB2-TK took place under the same conditions by purified supernatant using a diethylaminoethyl sepharose column followed by anion exchange and size-exclusion chromatography columns. The final yields of purified EGFR-TK and ErbB2-TK were 8.4 and 9.5mg per liter of culture, respectively. Determination of EGFR-TK and ErbB2-TK was performed via enzyme activity with commercial drugs. The IC50 values of erlotinib and afatinib against EGFR-TK were 13.09nM and 2.36nM respectively, while the IC50 values of lapatinib and afatinib against ErbB2-TK were 24.69nM and 1.36nM, respectively. These results confirmed that soluble proteins of the active intracellular domain of the HERs family were successfully expressed and purified in a bacterial system. The new protein expression and purification protocol will greatly facilitate the enzymatic inhibition and structural studies of this protein for drug discovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.