Abstract

Metabolism of the prototype human CYP2D6 substrates debrisoquine and bufuralol proceeds at a much slower rate in mice; therefore, the mouse has been proposed as an animal model for the human CYP2D6 genetic deficiency. To interpret the molecular mechanism of this deficiency, a cDNA belonging to the CYP2D gene subfamily (Cyp2d22) has been cloned and sequenced from a mouse mammary tumor-derived cell line. In the current study, Cyp2d22 enzyme was overexpressed and purified from insect cells using a baculovirus-mediated system. The activity of this purified enzyme was directly compared with purified human CYP2D6 toward codeine, dextromethorphan, and methadone as substrates. Purified Cyp2d22 was found to catalyze the O-demethylation of dextromethorphan with significantly higher K(m) values (250 microM) than that (4.2 microM) exhibited by purified human CYP2D6. The K(m) for dextromethorphan N-demethylation by Cyp2d22 was found to be 418 microM, much lower than that observed with human CYP2D6 and near the K(m) for dextromethorphan N-demethylation catalyzed by CYP3A4. CYP2D6 catalyzed codeine O-demethylation, whereas Cyp2d22 and CYP3A4 mediated codeine N-demethylation. Furthermore, methadone, a known CYP3A4 substrate and CYP2D6 inhibitor, was N-demethylated by Cyp2d22 with a K(m) of 517 microM and V(max) of 4.9 pmol/pmol/min. Quinidine and ketoconazole, potent inhibitors to CYP2D6 and CYP3A4, respectively, did not show strong inhibition toward Cyp2d22-mediated dextromethorphan O- or N-demethylation. These results suggest that mouse Cyp2d22 has its own substrate specificity beyond CYP2D6-like-deficient activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.